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Global Convergence Techniques

Still consider
minimize

x∈Rn
f (x),

where f : Rn → R twice continuously differentiable.

Question

How can we ensure convergence from remote starting points?

Methods can fail if step is too large ... or too small

Two mechanisms restrict steps:

1 Line-Search Methods ... search along descend direction s(k)

2 Trust-Region Methods ... restrict computation of step.

Both converge, because steps revert to steepest descend.
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Failures of Newton’s Method

Failure of Newton
f (x) = x4

1 + x1x2 + (1 + x2)2)
No descend direction

minimize
x

f (x) = x2 − 1

4
x4.

Alternates −
√

2/5 and
√

2/5.

Step too large
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General Line-Search Method

Recall line-search method for minimize
x∈Rn

f (x)

General Line-Search Method

Let σ > 0 constant. Given x (0), set k = 0.

repeat

Find search direction s(k) such that s(k)
T

g(x (k)) < 0.

Compute steplength αk such that Wolfe condition holds.

Set x (k+1) := x (k) + αks(k) and k = k + 1.

until x (k) is (local) optimum;

Wolfe Line-Search Conditions

f (x (k) + αks(k))− f (k) ≤ δαkg (k)T s(k)

g(x (k) + αks(k))T s(k) ≥ σg (k)T s(k).
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Illustration of Wolf Conditions

Wolfe Line-Search Conditions

f (x (k) + αks(k)) ≤ f (k) + δαkg (k)T s(k)

g(x (k) + αks(k))T s(k) ≥ σg (k)T s(k)

Slope at x (k) in direction s(k) is s(k)
T

g (k)

1st condition requires
sufficient decrease

2nd condition moves
x (k+1) away from x (k)
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General Line-Search Method

Theorem (Convergence of Line-Search Methods)

f (x) continuously differentiable and gradient

g(x) = ∇f (x) Lipschitz continuous on Rn.

Then, one of three outcomes applies:

1 finite termination: g (k) = 0 for some k > 0, or

2 unbounded iterates: lim
k→∞

f (k) = −∞, or

3 directional convergence:

lim
k→∞

min

∣∣∣s(k)T g (k)
∣∣∣ ,
∣∣∣s(k)T g (k)

∣∣∣∥∥s(k)
∥∥
 = 0.

The third outcome only somewhat successful:
... in the limit there is no descend along s(k).
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General Line-Search Method

Corollary (Convergence of Steepest Descend Method)

f (x) continuously differentiable and gradient

g(x) = ∇f (x) Lipschitz continuous on Rn.

Then steepest descend algorithm results in:

1 finite termination: g (k) = 0 for some k > 0, or

2 unbounded iterates: lim
k→∞

f (k) = −∞, or

3 convergence to a stationary point: lim
k→∞

g (k) = 0.

Strengthen descend condition from s(k)
T

g(x (k)) < 0 to

s(k)
T

g(x (k)) < −σ‖g(x (k))‖2

... s(k) has σ component of steepest descend direction
⇒ any line-search method with stronger descend converges.
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Trust-Region Methods
More conservative than line-search methods:

Computation of search direction inside a trust-region
Revert to steepest descend as trust-region is reduced
Computationally more expensive per iteration

... enjoy stronger convergence properties

Motivation for Trust-Region Methods

Taylor model around x (k) accurate in neighborhood of x (k)

Minimize Taylor model inside some neighborhood.

How to define neighborhood?

Depends on function

Shape may be very complex

Use simple trust-region:

‖x − x (k)‖2 ≤ ∆k
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Trust-Region Methods

Trust-region method for minimize
x∈Rn

f (x)

Basic Idea of Trust-Region Methods

1 Minimize model of f (x) inside trust-region ‖x − x (k)‖2 ≤ ∆k

2 Move to new point, if we make progress

3 Reduce radius ∆k , if we do not make progress
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Trust-Region Methods

Trust-region models for

minimize
x∈Rn

f (x)

Trust-Region Models

Linear model:

lk(s) = f (k) + sTg (k) ' f (x (k) + s)

Quadratic model

qk(s) = f (k) + sTg (k) +
1

2
sTB(k)s ' f (x (k) + s)

where f (k) = f (x (k)), g (k) = ∇f (x (k)), and B(k) ≈ ∇2f (x (k))
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Illustration of Linear/Quadratic Trust-Region Models
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Quadratic Trust-Region Subproblem

Quadratic trust-region subproblem

minimize
s

qk(s) = f (k)+sTg (k)+
1

2
sTB(k)s subject to ‖s‖2 ≤ ∆k

... only needs to be solved “approximately” ... more later!

`2 norm is natural choice for unconstrained optimization.

M-norm for positive definite matrix, M, is a useful alternative:

‖x − x (k)‖M :=

√(
x − x (k)

)T
M
(
x − x (k)

)
≤ ∆k M-norm TR

Mitigates poor scaling of variables

Trust-region subproblem easy to solve

Interpret M as a preconditioner for trust-region subproblem
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Trust-Region Radius Adjustment

Adjust ∆k based on agreement of actual and predicted reduction

rk :=
actual reduction

predicted reduction
:=

f (k) − f (x (k) + s(k))

f (k) − qk(s(k))

rk ≈ 1 ⇒ qk(s) close to f (x) . . . . . . . . . . . . . . . . . . . . . . . . accept

rk < 0 ⇒ f (x) increases over step s(k) . . . . . . . . . . . . . . . . reject

Trust-Region Radius Adjustment

If rk ≥ ηs > 0 then accept step & possibly increase ∆k

If rk < ηs then reject step & decrease ∆k

... resolve TR subproblem to get better agreement, rk
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Trust-Region Radius Adjustment

Illustration of trust-region adjustment

reject accept
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General Trust-Region Method
Let 0 < ηs < ηv and 0 < γd < 1 < γi .
Given x (0), set k = 0, initialize ∆0 > 0.
repeat

Approximately solve the trust-region subproblem.

Compute rk = f (k)−f (x(k)+s(k))

f (k)−qk (s(k))
.

if rk ≥ ηv very successful step then
Accept the step x (k+1) := x (k) + s(k).
Increase the trust-region radius, ∆k+1 := γi∆k .

else if rk ≥ ηs successful step then
Accept the step x (k+1) := x (k) + s(k).
Keep the trust-region radius unchanged, ∆k+1 := ∆k .

else if rk < ηs unsuccessful step then
Reject the step x (k+1) := x (k).
Decrease the trust-region radius, ∆k+1 := γd∆k .

end
Set k = k + 1.

until x (k) is (local) optimum;
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General Trust-Region Method

Reasonable values for Trust-Region parameters:

Very successful step agreement: ηv = 0.9 or 0.99

Successful step agreement: ηs = 0.1 or 0.01,

Trust-region increase/decrease factors γi = 2, γd = 1/2

Do not increase trust-region radius, unless step is on boundary

Trust-region algorithm much simpler than previous methods

Computational difficulty hidden in subproblem solve

Must be careful to solve TR subproblem efficiently.
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The Cauchy Point & Steepest Descend Directions

Use steepest descend for minimalist conditions on TR subproblem

Definition (Cauchy Point)

Cauchy point: minimizer of model in steepest descend direction

αc := argmin
α

qk(−αg (k)) subject to 0 ≤ α‖g (k)‖ ≤ ∆k

= argmin
α

qk(−αg (k)) subject to 0 ≤ α ≤ ∆k

‖g (k)‖
.

then Cauchy point is s
(k)
c = −αcg (k)

Cauchy point is cheap to compute

Cauchy point is minimalistic assumption for convergence:

qk(s(k)) ≤ qk(s
(k)
c ) and ‖s(k)‖ ≤ ∆k
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Outline of Convergence of Trust-Region Methods

Outline of convergence proof ... ideas apply in other areas

1 Lower bound on predicted reduction from Cauchy point:

pred. reduct. f (k)−qk(s
(k)
c ) ≥ 1

2
‖g (k)‖2 min

(
‖g (k)‖2

1 + ‖B(k)‖
, κ∆k

)
.

2 Corollary TR subproblem solution s(k), satisfies lower bound.

TR step makes at least as much progress as s
(k)
c

3 Bound agreement between objective and quadratic model:∣∣∣f (x (k) + s(k))− qk(s(k))
∣∣∣ ≤ κ∆2

k ,

κ > 0 depends Hessian bounds ... from Taylor’s theorem.
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Outline of Convergence of Trust-Region Methods

Cont. outline of convergence proof ...

1 Crucial Result
Can always make progress from non-critical point g (k) 6= 0:

If ∆k ≤ ‖g (k)‖2κ(1− ηv ), then very successful step

... and ∆k+1 ≥ ∆k

Here κ(1− ηv ) constant
ηs threshold for very successful step

Intuitive: reducing ∆ gives better agreement
... make progress with rk ' 1

2 If gradient norm bounded away from zero, i.e. ‖g (k)‖ ≥ ε > 0,
... then trust-region radius also bounded away from zero:

‖g (k)‖ ≥ ε > 0 ⇒ ∆k ≥ εκ(1− ηv ).

3 If number of iteration finite, then final iterate is stationary.
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Outline of Convergence of Trust-Region Methods

Summarize results in theorem ...

Theorem (Convergence of TR Method with Cauchy Condition)

f (x) twice continuously differentiable and Hessian matrices
B(k),H(k) bounded. Then, TR algorithm has on of three
outcomes:

1 finite termination: g (k) = 0 for some k > 0, or

2 unbounded iterates: lim
k→∞

f (k) = −∞, or

3 convergence to a stationary point: lim
k→∞

g (k) = 0.
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Solving the Trust-Region Subproblem

Remarkable Result about TR Subproblem

With `2-norm TR, can solve TR subproblem to global optimality.

Theorem

Global minimizer, s∗, of trust-region subproblem,

minimize
s

q(s) := f + gT s + 1
2sTBs subject to ‖s‖2 ≤ ∆

satisfies (B + λ∗I )s∗ = −g , where

B + λ∗I positive definite,

λ∗ ≥ 0, and

λ∗(‖s∗‖2 −∆) = 0.

Moreover, if B + λ∗I is positive definite, then s∗ is unique.
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Solving the Trust-Region Subproblem

Theorem

Global minimizer, s∗, of trust-region subproblem,

minimize
s

q(s) := f + gT s + 1
2sTBs subject to ‖s‖2 ≤ ∆

satisfies
(B + λ∗I )s∗ = −g ,

where B + λ∗I positive definite, λ∗ ≥ 0, and λ∗(‖s∗‖2 −∆) = 0.
Moreover, if B + λ∗I is positive definite, then s∗ is unique.

Necessary and sufficient conditions for global minimizer

Optimality conditions are KKT conditions of TR subproblem.

Suggest way to solve TR subproblem to global optimality
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Solving the Trust-Region Subproblem

Divide solution of TR subproblem,

minimize
s

q(s) := f + gT s + 1
2sTBs subject to ‖s‖2 ≤ ∆

into two cases:

1 B pos. def. and solution of Bs = −g , satisfies ‖s‖ ≤ ∆

2 B not pos. def. or solution of Bs = −g , satisfies ‖s‖ > ∆

Case 1: B positive def., and Bs = −g , satisfies ‖s‖ ≤ ∆

Solution s is global solution of TR subproblem

... modern factorization routines detect positive definiteness
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Solving the Trust-Region Subproblem

Trust-region subproblem

minimize
s

q(s) := f + gT s + 1
2sTBs subject to ‖s‖2 ≤ ∆

Case 2: B not pos. def. or solution of Bs = −g , satisfies ‖s‖ > ∆

Optimality conditions of TR subproblem: (s∗, λ∗) satisfies

(B + λI )s = −g and sT s = ∆2,

set of (n + 1) linear/quadratic equations in (n + 1) unknowns.

Methods for solving linear/quadratic equation:

Compute Cholesky factors of B + λI

Eliminate s from quadratic equation

Solve nonlinear equation for λ ... repeat

... need to be careful in certain difficult cases.
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Solving Large-Scale Trust-Region Subproblems

Trust-region subproblem

minimize
s

q(s) := f + gT s + 1
2sTBs subject to ‖s‖2 ≤ ∆

Cholesky factors are computationally impractical for large n
⇒ consider iterative methods for solving TR subproblem

Conjugate gradients good choice
... first step is steepest descend consistent with Cauchy step!

Get convergence to stationary points for “free”

Adapting Conjugate Gradient to TR constraint

What is the interaction between iterates and the trust region?

What do we do, if B is indefinite?
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Solving Large-Scale Trust-Region Subproblems

Trust-Region Subproblem Conjugate-Gradient Method

Set s(0) = 0, g (0) = g , d (0) = −g , and i = 0.
repeat

Exact line search: αi = ‖g (i)‖2/(d (i)T Bd (i))

New iterate: s(i+1) = s(i) + αid
(i)

Gradient update: g (i+1) = g (i) + αiBd (i)

Fletcher-Reeves: βi = ‖g (i+1)‖2/‖g (i)‖2

New search direction: d (i+1) = −g (i+1) + βid
(i)

Set i = i + 1.
until Breakdown or small ‖g (i)‖ found ;

Breakdown: needs to be defined (reach TR or indefinite)
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Solving Large-Scale Trust-Region Subproblems

minimize
s

q(s) := f + gT s + 1
2sTBs subject to ‖s‖2 ≤ ∆

What is the interaction between iterates and the trust region?

Theorem

Apply conjugate-gradient to trust-region subproblem, assume
d (i)T Bd (i) > 0 for all 0 ≤ i ≤ k. Then

‖s(i)‖2 ≤ ‖s(i+1)‖2 ∀ 0 ≤ i ≤ k.

If ‖s(i)‖ > ∆ at iteration i ,
... then subsequent iterates lie outside TR too.

Once we pass TR boundary, then we know that ‖s∗‖ = ∆
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Solving Large-Scale Trust-Region Subproblems

minimize
s

q(s) := f + gT s + 1
2sTBs subject to ‖s‖2 ≤ ∆

Termination Conditions for TR Conjugate Gradient

Terminate CG solution of TR subproblem, if

1 Find non-positive curvature: d (i)T Bd (i) ≤ 0:
⇒ q(s) is unbounded along d (i).

2 Generate iterate outside TR
⇒ all subsequent iterates lie outside the TR

If ‖s(i+1)‖ > ∆, then compute step to boundary solving for αB :

‖s(i) + αBd (i)‖22 = ∆2.

Approach OK convex case, poor for nonconvex f (x).
Prefer more elaborate Lanczos method for nonconvex f (x).
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Conclusions
Introduction to Trust-Region Methods

Minimize model of f (x)
inside trust-region
‖x − x (k)‖ ≤ ∆k

Measure progress ratio

r =
actual reduct.

predicted reduct.

Accept step if good progress

Reject step if poor progress
... and reduce ∆k

Solve TR subproblem to
global optimality
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